報(bào)告題目:Pore-Scale Flow in Tight Rocks: An Integrated Experimental–Theoretical Framework for Geologic Storage and Unconventional Reservoirs (致密巖石孔隙尺度流動(dòng):面向非常規(guī)油氣藏的一體化實(shí)驗(yàn)與理論框架)
報(bào) 告 人:楊韻 博導(dǎo)
報(bào)告時(shí)間:12月24日 16:00-18:00
報(bào)告地點(diǎn):全國(guó)重點(diǎn)實(shí)驗(yàn)室A403報(bào)告廳
報(bào)告人簡(jiǎn)介:
楊韻博士現(xiàn)任美國(guó)懷俄明大學(xué)能源資源學(xué)院研究科學(xué)家。此前先后在洛斯阿拉莫斯國(guó)家實(shí)驗(yàn)室、卡爾加里大學(xué)從事博士后研究工作。她于美國(guó)賓夕法尼亞州立大學(xué)分別獲得能源與礦物工程博士學(xué)位和油氣工程碩士學(xué)位,并在塔爾薩大學(xué)取得石油工程學(xué)士學(xué)位。楊韻博士主要聚焦多孔介質(zhì)中多尺度、多物理場(chǎng)耦合流動(dòng)與傳輸機(jī)理開(kāi)展研究,面向非常規(guī)油氣開(kāi)發(fā)及CO2、H2地質(zhì)儲(chǔ)存等關(guān)鍵科學(xué)與工程問(wèn)題。她主持和參與了多項(xiàng)美國(guó)能源部及國(guó)家實(shí)驗(yàn)室資助項(xiàng)目,包括地質(zhì)氫儲(chǔ)存、碳礦化、深部煤層CO2地質(zhì)儲(chǔ)存以及懷俄明Sweetwater碳儲(chǔ)集樞紐CarbonSAFE等課題。她的研究在氣體在儲(chǔ)層巖石中的擴(kuò)散與吸附動(dòng)力學(xué)、儲(chǔ)層蓋層封堵性能評(píng)價(jià)以及非常規(guī)天然氣采收與CO2驅(qū)提高采收率等方面取得了系統(tǒng)性研究成果,已在PNAS Nexus、Applied Energy、SPE Journal、ACS Earth and Space Chemistry等國(guó)際知名期刊發(fā)表論文26篇。
報(bào)告內(nèi)容摘要:
The talk focuses on the challenges of unconventional gas recovery in ultra-low-permeability shale and coal reservoirs, where recovery factors are typically below 20% despite supplying most of the natural gas in the U.S. Because flow in these tight, heterogeneous rocks is poorly characterized, especially the multiscale transport from matrix to fractures (diffusion, desorption, etc.), there is both low recovery and a risk of long-term fugitive emissions. The speaker frames two key questions: (1) how pore structure controls gas desorption and diffusion in shale/coal matrices, and (2) how to optimize pressure management and engineering strategies to maximize recovery efficiency in unconventional reservoirs. To address these questions, the talk presents an integrated experimental–theoretical framework that links lab-scale measurements to field-scale reservoir simulation. This includes: (1) high-pressure/high-temperature adsorption experiments using an improved volumetric setup to obtain reliable adsorption isotherms for multiple gases on organic-rich rocks; (2) investigation of gas adsorption and kinetics in nanopores, highlighting the limits of simple Langmuir models in heterogeneous media; (3) development of mechanistic, multiscale flow models for nanoporous networks using concepts such as fractal theory to capture diffusion behavior; and (4) exploration of cryogenic fracturing as a feasible method to enhance diffusion-dominated flow by altering pore and fracture structures from the pore scale to the fracture scale. Together, these components aim to build a physics-based foundation for better forecasting and improving unconventional gas production while managing environmental risks.
主辦單位:油氣藏地質(zhì)及開(kāi)發(fā)工程全國(guó)重點(diǎn)實(shí)驗(yàn)室
西南石油大學(xué)ARMA學(xué)生分會(huì)
石油與天然氣工程學(xué)院
科學(xué)技術(shù)發(fā)展研究院